A review of liquid crystal spatial light modulators: devices and applications

Spatial light modulators, as dynamic flat-panel optical devices, have witnessed rapid development over the past two decades, concomitant with the advancements in micro- and opto-electronic integration technology. In particular, liquid-crystal spatial light modulator (LC-SLM) technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude. These devices have gained significant interest in the nascent field of structured light in space and time, facilitated by their ease of use and real-time light manipulation, fueling both fundamental research and practical applications. Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications, covering topics as diverse as beam shaping and steering, holography, optical trapping and tweezers, measurement, wavefront coding, optical vortex, and quantum optics. Finally, we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.

References

[1] Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 15, 253–262 (2021). doi: 10.1038/s41566-021-00780-4 CrossRef Google Scholar Pub Med -->
[2] He C, Shen YJ, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 11, 205 (2022). doi: 10.1038/s41377-022-00897-3 CrossRef Google Scholar Pub Med -->
[3] Buono WT, Forbes A. Nonlinear optics with structured light. Opto-Electron Adv 5, 210174 (2022). doi: 10.29026/oea.2022.210174 CrossRef Google Scholar Pub Med -->
[4] Dickey FM, Lizotte TE. Laser Beam Shaping Applications (CRC Press, Boca Raton, 2006). Google Scholar Pub Med -->
[5] Dickey FM. Laser Beam Shaping: Theory and Techniques 2nd ed (CRC Press, Boca Raton, 2014). Google Scholar Pub Med -->
[6] Dickey FM. Laser beam shaping. Opt Photonics News 14, 30–35 (2003). Google Scholar Pub Med -->
[7] Rhodes PW, Shealy DL. Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis. Appl Opti 19, 3545–3553 (1980). doi: 10.1364/AO.19.003545 CrossRef Google Scholar Pub Med -->
[8] Lohmann AW. A pre-history of computer-generated holography. Opt Photonics News 19, 36–47 (2008). Google Scholar Pub Med -->
[9] Soifer AV, Kotlar V, Doskolovich L. Iteractive Methods for Diffractive Optical Elements Computation (London, CRC Press, 1997). Google Scholar Pub Med -->
[10] Soifer VA, Golub MA. Laser Beam Mode Selection by Computer Generated Holograms (Boca Raton, CRC Press, 1994). Google Scholar Pub Med -->
[11] Soifer VA. Methods for Computer Design of Diffractive Optical Elements (Willey, New York, 2002). Google Scholar Pub Med -->
[12] Soifer VA. Diffractive Optics and Nanophotonics (CRC Press, Boca Raton, 2017). Google Scholar Pub Med -->
[13] Lazarev G, Chen PJ, Strauss J, Fontaine N, Forbes A. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt Express 27, 16206–16249 (2019). doi: 10.1364/OE.27.016206 CrossRef Google Scholar Pub Med -->
[14] Zhang ZC, You Z, Chu DP. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl 3, e213 (2014). doi: 10.1038/lsa.2014.94 CrossRef Google Scholar Pub Med -->
[15] Huang YG, Liao E, Chen R, Wu ST. Liquid-crystal-on-silicon for augmented reality displays. Appl Sci 8, 2366 (2018). doi: 10.3390/app8122366 CrossRef Google Scholar Pub Med -->
[16] Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x CrossRef Google Scholar Pub Med -->
[17] Lu YQ, Li Y. Planar liquid crystal polarization optics for near-eye displays. Light Sci Appl 10, 122 (2021). doi: 10.1038/s41377-021-00567-w CrossRef Google Scholar Pub Med -->
[18] Berto P, Philippet L, Osmond J, Liu CF, Afridi A et al. Tunable and free-form planar optics. Nat Photonics 13, 649–656 (2019). doi: 10.1038/s41566-019-0486-3 CrossRef Google Scholar Pub Med -->
[19] Sui XM, He ZH, Cao LC, Jin GF. Recent progress in complex-modulated holographic display based on liquid crystal spatial light modulators. Chin J Liq Cryst Dis 36, 797–809 (2021). Google Scholar Pub Med -->
[20] Li RJ, Cao LC. Progress in phase calibration for liquid crystal spatial light modulators. Appl Sci 9, 2012 (2019). doi: 10.3390/app9102012 CrossRef Google Scholar Pub Med -->
[21] Rosales-Guzmán C, Forbes A. How to Shape Light with Spatial Light Modulators (SPIE, 2017). Google Scholar Pub Med -->
[22] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photonics 8, 200–227 (2016). doi: 10.1364/AOP.8.000200 CrossRef Google Scholar Pub Med -->
[23] Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71, 1929–1960 (2000). doi: 10.1063/1.1150614 CrossRef Google Scholar Pub Med -->
[24] Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun 284, 3669–3692 (2011). doi: 10.1016/j.optcom.2011.03.084 CrossRef Google Scholar Pub Med -->
[25] Szuniewicz J, Kurdziałek S, Kundu S, Zwolinski W, Chrapkiewicz R et al. Noise-resistant phase imaging with intensity correlation. Science Advances 9, eadh5396 (2023). doi: 10.1126/sciadv.adh5396 CrossRef Google Scholar Pub Med -->
[26] Yao E, Franke-Arnold S, Courtial J, Padgett MJ, Barnett SM. Observation of quantum entanglement using spatial light modulators. Opt Express 14, 13089–13094 (2006). doi: 10.1364/OE.14.013089 CrossRef Google Scholar Pub Med -->
[27] Kong LJ, Sun YF, Zhang FR, Zhang JF, Zhang XD. High-dimensional entanglement-enabled holography. Physical Review Letters 130, 053602 (2023). Google Scholar Pub Med -->
[28] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev 5, 81–101 (2011). doi: 10.1002/lpor.200900047 CrossRef Google Scholar Pub Med -->
[29] Shapiro JH. Computational ghost imaging. Phys Rev A 78, 061802 (2008). doi: 10.1103/PhysRevA.78.061802 CrossRef Google Scholar Pub Med -->
[30] Moreau PA, Toninelli E, Gregory T, Padgett MJ. Ghost imaging using optical correlations. Laser Photonics Rev 12, 1700143 (2018). doi: 10.1002/lpor.201700143 CrossRef Google Scholar Pub Med -->
[31] Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81 CrossRef Google Scholar Pub Med -->
[32] Grier DG. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935 CrossRef Google Scholar Pub Med -->
[33] Sun BS, Salter PS, Roider C, Jesacher A, Strauss J et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci Appl 7, 17117 (2018). Google Scholar Pub Med -->
[34] Jesacher A, Maurer C, Schwaighofer A, Bernet S, Ritsch-Marte M. Near-perfect hologram reconstruction with a spatial light modulator. Opt Express 16, 2597–2603 (2008). doi: 10.1364/OE.16.002597 CrossRef Google Scholar Pub Med -->
[35] Meng XS, Qiu XY, Li GQ, Ye WJ, Lin YQ et al. Study of optical rotation generated by the twisted nematic liquid crystal film: based on circular birefringence effect. Appl Opt 58, 5301–5309 (2019). doi: 10.1364/AO.58.005301 CrossRef Google Scholar Pub Med -->
[36] Hua H, Liu Y, Yong K. The effect of pretilt and twisted angle on twisted nematic liquid crystal filter. Opt Spectrosc 125, 275–280 (2018). doi: 10.1134/S0030400X1808009X CrossRef Google Scholar Pub Med -->
[37] Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys 12, 1387–1412 (2012). doi: 10.1016/j.cap.2012.03.019 CrossRef Google Scholar Pub Med -->
[38] Efron U, Wu ST, Bates TD. Nematic liquid crystals for spatial light modulators: recent studies. J Opt Soc Am B 3, 247–252 (1986). doi: 10.1364/JOSAB.3.000247 CrossRef Google Scholar Pub Med -->
[39] Konforti N, Marom E, Wu ST. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. Opt Lett 13, 251–253 (1988). doi: 10.1364/OL.13.000251 CrossRef Google Scholar Pub Med -->
[40] Wen L, Nan XH, Li JX, Cumming DRS, Hu X et al. Broad-band spatial light modulation with dual epsilon-near-zero modes. Opto-Electron Adv 5, 200093 (2022). doi: 10.29026/oea.2022.200093 CrossRef Google Scholar Pub Med -->
[41] Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063 CrossRef Google Scholar Pub Med -->
[42] Chen HMP, Yang JP, Yen HT, Hsu ZN, Huang YG et al. Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl Sci 8, 2323 (2018). doi: 10.3390/app8112323 CrossRef Google Scholar Pub Med -->
[43] Tabiryan NV, Roberts DE, Liao Z, Hwang JY, Moran M et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv Opt Mater 9, 2001692 (2021). doi: 10.1002/adom.202001692 CrossRef Google Scholar Pub Med -->
[44] Wen YF, Zhang Q, He Q, Zhang FF, Xiong LX et al. Shortening focal length of 100-mm aperture flat lens based on improved sagnac interferometer and bifacial liquid crystal. Adv Opt Mater 11, 2300127 (2023). doi: 10.1002/adom.202300127 CrossRef Google Scholar Pub Med -->
[45] Nassiri MG, Brasselet E. Multispectral management of the photon orbital angular momentum. Phys Rev Lett 121, 213901 (2018). doi: 10.1103/PhysRevLett.121.213901 CrossRef Google Scholar Pub Med -->
[46] Brasselet E. Tunable high-resolution macroscopic self-engineered geometric phase optical elements. Phys Rev Lett 121, 033901 (2018). doi: 10.1103/PhysRevLett.121.033901 CrossRef Google Scholar Pub Med -->
[47] McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemp Phys 46, 15–28 (2005). doi: 10.1080/0010751042000275259 CrossRef Google Scholar Pub Med -->
[48] Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett 99, 213901 (2007). doi: 10.1103/PhysRevLett.99.213901 CrossRef Google Scholar Pub Med -->
[49] Carter WH. Spot size and divergence for Hermite Gaussian beams of any order. Appl Opt 19, 1027–1029 (1980). doi: 10.1364/AO.19.001027 CrossRef Google Scholar Pub Med -->
[50] Zauderer E. Complex argument Hermite–Gaussian and Laguerre–Gaussian beams. J Opt Soc Am A 3, 465–469 (1986). doi: 10.1364/JOSAA.3.000465 CrossRef Google Scholar Pub Med -->
[51] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185 CrossRef Google Scholar Pub Med -->
[52] Yang YQ, Kang XW, Cao LC. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator. J Phys Photonics 5, 035002 (2023). doi: 10.1088/2515-7647/acd28c CrossRef Google Scholar Pub Med -->
[53] Göröcs Z, Erdei G, Sarkadi T, Ujhelyi F, Reményi J et al. Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter. Opt Lett 32, 2336–2338 (2007). doi: 10.1364/OL.32.002336 CrossRef Google Scholar Pub Med -->
[54] Frumker E, Silberberg Y. Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J Opt Soc Am B 24, 2940–2947 (2007). doi: 10.1364/JOSAB.24.002940 CrossRef Google Scholar Pub Med -->
[55] Supradeepa VR, Huang CB, Leaird DE, Weiner AM. Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms. Opt Express 16, 11878–11887 (2008). doi: 10.1364/OE.16.011878 CrossRef Google Scholar Pub Med -->
[56] Paurisse M, Hanna M, Druon F, Georges P, Bellanger C et al. Phase and amplitude control of a multimode LMA fiber beam by use of digital holography. Opt Express 17, 13000–13008 (2009). doi: 10.1364/OE.17.013000 CrossRef Google Scholar Pub Med -->
[57] Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E. Hypergeometric-Gaussian modes. Opt Lett 32, 3053–3055 (2007). doi: 10.1364/OL.32.003053 CrossRef Google Scholar Pub Med -->
[58] Spangenberg DM, Dudley A, Neethling PH, Rohwer EG, Forbes A. White light wavefront control with a spatial light modulator. Opt Express 22, 13870–13879 (2014). doi: 10.1364/OE.22.013870 CrossRef Google Scholar Pub Med -->
[59] Zacharias T, Hadad B, Bahabad A, Eliezer Y. Axial sub-Fourier focusing of an optical beam. Opt Lett 42, 3205–3208 (2017). doi: 10.1364/OL.42.003205 CrossRef Google Scholar Pub Med -->
[60] Zhu LW, Yang R, Zhang DW, Yu JJ, Chen JN. Dynamic three-dimensional multifocal spots in high numerical-aperture objectives. Opt Express 25, 24756–24766 (2017). doi: 10.1364/OE.25.024756 CrossRef Google Scholar Pub Med -->
[61] Zeng TT, Chang CL, Chen ZZ, Wang HY, Ding JP. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. J Opt 20, 065605 (2018). doi: 10.1088/2040-8986/aac1de CrossRef Google Scholar Pub Med -->
[62] Vellekoop IM, van Putten EG, Lagendijk A, Mosk AP. Demixing light paths inside disordered metamaterials. Opt Express 16, 67–80 (2008). doi: 10.1364/OE.16.000067 CrossRef Google Scholar Pub Med -->
[63] Vellekoop IM, Mosk AP. Universal optimal transmission of light through disordered materials. Phys Rev Lett 101, 120601 (2008). doi: 10.1103/PhysRevLett.101.120601 CrossRef Google Scholar Pub Med -->
[64] Hsieh CL, Pu Y, Grange R, Psaltis D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt Express 18, 12283–12290 (2010). doi: 10.1364/OE.18.012283 CrossRef Google Scholar Pub Med -->
[65] Popoff SM, Lerosey G, Carminati R, Fink M, Boccara AC et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601 CrossRef Google Scholar Pub Med -->
[66] Popoff S, Lerosey G, Fink M, Boccara AC, Gigan S. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078 CrossRef Google Scholar Pub Med -->
[67] Mazilu M, Baumgartl J, Kosmeier S, Dholakia K. Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt Express 19, 933–945 (2011). doi: 10.1364/OE.19.000933 CrossRef Google Scholar Pub Med -->
[68] Madan I, Leccese V, Mazur A, Barantani F, LaGrange T et al. Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photonics 9, 3215–3224 (2022). doi: 10.1021/acsphotonics.2c00850 CrossRef Google Scholar Pub Med -->
[69] Fu SY, Zhang SK, Gao CQ. Bessel beams with spatial oscillating polarization. Sci Rep 6, 30765 (2016). doi: 10.1038/srep30765 CrossRef Google Scholar Pub Med -->
[70] Fu SY, Wang TL, Zhang ZY, Zhai YW, Gao CQ. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express 25, 20098–20108 (2017). doi: 10.1364/OE.25.020098 CrossRef Google Scholar Pub Med -->
[71] Wang F, Li J, Martinez-Piedra G, Korotkova O. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Opt Express 25, 26055–26066 (2017). doi: 10.1364/OE.25.026055 CrossRef Google Scholar Pub Med -->
[72] Zhu GX, Wen YH, Wu X, Chen YJ, Liu J et al. Obstacle evasion in free-space optical communications utilizing Airy beams. Opt Lett 43, 1203–1206 (2018). doi: 10.1364/OL.43.001203 CrossRef Google Scholar Pub Med -->
[73] Lin H, Jia BH, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett 36, 406–408 (2011). doi: 10.1364/OL.36.000406 CrossRef Google Scholar Pub Med -->
[74] Lightman S, Hurvitz G, Gvishi R, Arie A. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 4, 605–610 (2017). doi: 10.1364/OPTICA.4.000605 CrossRef Google Scholar Pub Med -->
[75] Okada T, Tanaka K. Photo-designed terahertz devices. Sci Rep 1, 121 (2011). doi: 10.1038/srep00121 CrossRef Google Scholar Pub Med -->
[76] Trichili A, Mhlanga T, Ismail Y, Roux FS, McLaren M et al. Detection of Bessel beams with digital axicons. Opt Express 22, 7553–17560 (2014). Google Scholar Pub Med -->
[77] Jenness NJ, Wu YQ, Clark RL. Fabrication of three-dimensional electrospun microstructures using phase modulated femtosecond laser pulses. Mater Lett 66, 360–363 (2012). doi: 10.1016/j.matlet.2011.09.015 CrossRef Google Scholar Pub Med -->
[78] Yang L, Ji SY, Xie KA, Du WQ, Liu BJ et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Opt Express 25, 8144–8157 (2017). doi: 10.1364/OE.25.008144 CrossRef Google Scholar Pub Med -->
[79] Sun XY, Dong ZL, Cheng KF, Chu DK, Kong DJ et al. Fabrication of oil–water separation copper filter by spatial light modulated femtosecond laser. J Micromech Microeng 30, 065007 (2020). doi: 10.1088/1361-6439/ab870d CrossRef Google Scholar Pub Med -->
[80] Pan D, Xu B, Liu SL, Li JW, Hu YL et al. Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Opt Lett 45, 2584–2587 (2020). doi: 10.1364/OL.389946 CrossRef Google Scholar Pub Med -->
[81] Xavier J, Boguslawski M, Rose P, Joseph J, Denz C. Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures. Adv Mater 22, 356–360 (2010). doi: 10.1002/adma.200901792 CrossRef Google Scholar Pub Med -->
[82] Yuan YJ, Jiang L, Li X, Zuo P, Xu CY et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun 11, 6185 (2020). doi: 10.1038/s41467-020-19985-2 CrossRef Google Scholar Pub Med -->
[83] Kelner R, Rosen J. Methods of single-channel digital holography for three-dimensional imaging. IEEE Trans Ind Inf 12, 220–230 (2016). doi: 10.1109/TII.2015.2475247 CrossRef Google Scholar Pub Med -->
[84] Reicherter M, Zwick S, Haist T, Kohler C, Tiziani H et al. Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers. Appl Opt 45, 888–896 (2006). doi: 10.1364/AO.45.000888 CrossRef Google Scholar Pub Med -->
[85] Euser TG, Whyte G, Scharrer M, Chen JSY, Abdolvand A et al. Dynamic control of higher-order modes in hollow-core photonic crystal fibers. Opt Express 16, 17972–17981 (2008). doi: 10.1364/OE.16.017972 CrossRef Google Scholar Pub Med -->
[86] Katz B, Wulich D, Rosen J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl Opt 49, 5757–5763 (2010). doi: 10.1364/AO.49.005757 CrossRef Google Scholar Pub Med -->
[87] Shimobaba T, Kakue T, Yamamoto Y, Hoshi I, Shiomi H et al. Hologram generation via Hilbert transform. OSA Continuum 3, 1498–1503 (2020). doi: 10.1364/OSAC.395003 CrossRef Google Scholar Pub Med -->
[88] Zhao Y, Cao LC, Zhang H, Kong DZ, Jin GF. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express 23, 25440–25449 (2015). doi: 10.1364/OE.23.025440 CrossRef Google Scholar Pub Med -->
[89] Shi L, Li BC, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021). doi: 10.1038/s41586-020-03152-0 CrossRef Google Scholar Pub Med -->
[90] Sui XM, He ZH, Zhang H, Cao LC, Jin GF. Spatiotemporal double-phase hologram for complex-amplitude holographic displays. Chin Opt Lett 18, 100901 (2020). doi: 10.3788/COL202018.100901 CrossRef Google Scholar Pub Med -->
[91] Christenson CW, Blanche PA, Tay S, Voorakaranam R, Gu T et al. Materials for an updatable holographic 3D display. J Disp Technol 6, 510–516 (2010). doi: 10.1109/JDT.2010.2046620 CrossRef Google Scholar Pub Med -->
[92] Kim J, Gopakumar M, Choi S, Peng YF, Lopes W et al. Holographic glasses for virtual reality. In Proceedings of ACM SIGGRAPH 2022 Conference Proceedings 33 (ACM, 2022);https://doi.org/10.1145/3528233.3530739. Google Scholar Pub Med -->
[93] Sato H, Kakue T, Ichihashi Y, Endo Y, Wakunami K et al. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Sci Rep 8, 1500 (2018). doi: 10.1038/s41598-018-19361-7 CrossRef Google Scholar Pub Med -->
[94] Cao HK, Lin SF, Kim ES. Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method. Opt Express 26, 21279–21300 (2018). doi: 10.1364/OE.26.021279 CrossRef Google Scholar Pub Med -->
[95] Derzhypolskyi AG, Gnatovskyi OV, Derzhypolska LA. Reduction of speckle noise in laser energy distribution on the target by means of modified fourier hologram and incoherent averaging technique. Semicond Phys Quantum Electron Optoelectron 21, 429–433 (2018). doi: 10.15407/spqeo21.04.429 CrossRef Google Scholar Pub Med -->
[96] Choi S, Gopakumar M, Peng YF, Kim J, O'Toole M et al. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. In Proceedings of ACM SIGGRAPH 2022 Conference Proceedings 32 (ACM, 2022);https://doi.org/10.1145/3528233.3530734. Google Scholar Pub Med -->
[97] Lee JS, Kim YK, Won YH. Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display. Opt Express 26, 2149–2159 (2018). doi: 10.1364/OE.26.002149 CrossRef Google Scholar Pub Med -->
[98] Tsutsumi N, Kinashi K, Sakai W, Nishide J, Kawabe Y et al. Real-time three-dimensional holographic display using a monolithic organic compound dispersed film. Opt Mater Express 2, 1003–1010 (2012). doi: 10.1364/OME.2.001003 CrossRef Google Scholar Pub Med -->
[99] Yeom HJ, Kim HJ, Kim SB, Zhang HJ, Li BN et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Opt Express 23, 32025–32034 (2015). doi: 10.1364/OE.23.032025 CrossRef Google Scholar Pub Med -->
[100] Choi MH, Ju YG, Park JH. Holographic near-eye display with continuously expanded eyebox using two-dimensional replication and angular spectrum wrapping. Opt Express 28, 533–547 (2020). doi: 10.1364/OE.381277 CrossRef Google Scholar Pub Med -->
[101] Rostykus M, Moser C. Compact lensless off-axis transmission digital holographic microscope. Opt Express 25, 16652–16659 (2017). doi: 10.1364/OE.25.016652 CrossRef Google Scholar Pub Med -->
[102] Kim D, Nam SW, Lee B, Seo JM, Lee B. Accommodative holography: improving accommodation response for perceptually realistic holographic displays. ACM Trans Graph 41, 111 (2022). Google Scholar Pub Med -->
[103] Zhou PC, Li Y, Liu SX, Su YK. Compact design for optical-see-through holographic displays employing holographic optical elements. Opt Express 26, 22866–22876 (2018). doi: 10.1364/OE.26.022866 CrossRef Google Scholar Pub Med -->
[104] Park JH, Kim SB. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Opt Express 26, 27076–27088 (2018). doi: 10.1364/OE.26.027076 CrossRef Google Scholar Pub Med -->
[105] Chang CL, Qi YJ, Wu J, Xia J, Nie SP. Speckle reduced lensless holographic projection from phase-only computer-generated hologram. Opt Express 25, 6568–6580 (2017). doi: 10.1364/OE.25.006568 CrossRef Google Scholar Pub Med -->
[106] Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph 36, 85 (2017). Google Scholar Pub Med -->
[107] Shi L, Huang FC, Lopes W, Matusik W, Luebke D. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics. ACM Trans Graph 36, 236 (2017). Google Scholar Pub Med -->
[108] Yamada S, Kakue T, Shimobaba T, Ito T. Interactive holographic display based on finger gestures. Sci Rep 8, 2010 (2018). doi: 10.1038/s41598-018-20454-6 CrossRef Google Scholar Pub Med -->
[109] Jordan P, Leach J, Padgett M, Blackburn P, Isaacs N et al. Creating permanent 3D arrangements of isolated cells using holographic optical tweezers. Lab Chip 5, 1224–1228 (2005). doi: 10.1039/b509218c CrossRef Google Scholar Pub Med -->
[110] Burnham DR, McGloin D. Holographic optical trapping of aerosol droplets. Opt Express 14, 4175–4181 (2006). doi: 10.1364/OE.14.004175 CrossRef Google Scholar Pub Med -->
[111] Chapin SC, Germain V, Dufresne ER. Automated trapping, assembly, and sorting with holographic optical tweezers. Opt Express 14, 13095–13100 (2006). doi: 10.1364/OE.14.013095 CrossRef Google Scholar Pub Med -->
[112] He XD, Xu P, Wang J, Zhan MS. Rotating single atoms in a ring lattice generated by a spatial light modulator. Opt Express 17, 21007–21014 (2009). doi: 10.1364/OE.17.021007 CrossRef Google Scholar Pub Med -->
[113] Hörner F, Woerdemann M, Müller S, Maier B, Denz C. Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophoton 3, 468–475 (2010). doi: 10.1002/jbio.201000033 CrossRef Google Scholar Pub Med -->
[114] Thalhammer G, Steiger R, Bernet S, Ritsch-Marte M. Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt 13, 044024 (2011). doi: 10.1088/2040-8978/13/4/044024 CrossRef Google Scholar Pub Med -->
[115] Liang YS, Lei M, Yan SH, Li MM, Cai YA et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl Opt 57, 79–84 (2018). doi: 10.1364/AO.57.000079 CrossRef Google Scholar Pub Med -->
[116] Hadad B, Froim S, Nagar H, Admon T, Eliezer Y et al. Particle trapping and conveying using an optical Archimedes’ screw. Optica 5, 551–556 (2018). doi: 10.1364/OPTICA.5.000551 CrossRef Google Scholar Pub Med -->
[117] Wen JS, Gao BJ, Zhu GY, Liu DD, Wang LG. Precise position and angular control of optical trapping and manipulation via a single vortex-pair beam. Opt Lasers Eng 148, 106773 (2022). doi: 10.1016/j.optlaseng.2021.106773 CrossRef Google Scholar Pub Med -->
[118] Sainis SK, Germain V, Mejean CO, Dufresne ER. Electrostatic interactions of colloidal particles in nonpolar solvents: role of surface chemistry and charge control agents. Langmuir 24, 1160–1164 (2008). doi: 10.1021/la702432u CrossRef Google Scholar Pub Med -->
[119] Di Leonardo R, Keen S, Leach J, Saunter CD, Love GD et al. Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. Phys Rev E 76, 061402 (2007). Google Scholar Pub Med -->
[120] Di Leonardo R, Saglimbeni F, Ruocco G. Very-long-range nature of capillary interactions in liquid films. Phys Rev Lett 100, 106103 (2008). doi: 10.1103/PhysRevLett.100.106103 CrossRef Google Scholar Pub Med -->
[121] van der Horst A, Forde NR. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt Express 16, 20987–21003 (2008). doi: 10.1364/OE.16.020987 CrossRef Google Scholar Pub Med -->
[122] Mejean CO, Schaefer AW, Millman EA, Forscher P, Dufresne ER. Multiplexed force measurements on live cells with holographic optical tweezers. Opt Express 17, 6209–6217 (2009). doi: 10.1364/OE.17.006209 CrossRef Google Scholar Pub Med -->
[123] Di Leonardo R, Leach J, Mushfique H, Cooper JM, Ruocco G et al. Multipoint holographic optical velocimetry in microfluidic systems. Phys Rev Lett 96, 134502 (2006). doi: 10.1103/PhysRevLett.96.134502 CrossRef Google Scholar Pub Med -->
[124] Mushfique H, Leach J, Di Leonardo R, Padgett MJ, Cooper JM. Optically driven pumps and flow sensors for microfluidic systems. Proc Inst Mech Eng Part C J Mech Eng Sci 222, 829–837 (2008). Google Scholar Pub Med -->
[125] Woerdemann M, Alpmann C, Hörner F, Devaux A, De Cola L et al. Optical control and dynamic patterning of zeolites. Proc SPIE 7762, 77622E (2010). doi: 10.1117/12.863610 CrossRef Google Scholar Pub Med -->
[126] Ghadiri R, Surbek M, Esen C, Ostendorf A. Optically based manufacturing with polymer particles. Phys Procedia 5, 47–51 (2010). Google Scholar Pub Med -->
[127] Cojoc D, Emiliani V, Ferrari E, Malureanu R, Cabrini S et al. Multiple optical trapping by means of diffractive optical elements. Jpn J Appl Phys 43, 3910–3915 (2004). doi: 10.1143/JJAP.43.3910 CrossRef Google Scholar Pub Med -->
[128] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Size selective trapping with optical “cogwheel” tweezers. Opt Express 12, 4129–4135 (2004). doi: 10.1364/OPEX.12.004129 CrossRef Google Scholar Pub Med -->
[129] Hermerschmidt A, Krüger S, Haist T, Zwick S, Warber M et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm. Proc SPIE 6905, 690508 (2008). doi: 10.1117/12.764649 CrossRef Google Scholar Pub Med -->
[130] Zwick S, Haist T, Miyamoto Y, He L, Warber M et al. Holographic twin traps. J Opt A Pure Appl Opt 11, 034011 (2009). doi: 10.1088/1464-4258/11/3/034011 CrossRef Google Scholar Pub Med -->
[131] Jesacher A, Maurer C, Fürhapter S, Schwaighofer A, Bernet S et al. Optical tweezers of programmable shape with transverse scattering forces. Opt Commun 281, 2207–2212 (2008). doi: 10.1016/j.optcom.2007.12.042 CrossRef Google Scholar Pub Med -->
[132] Kim H, Lee W, Lee HG, Jo H, Song Y et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat Commun 7, 13317 (2016). doi: 10.1038/ncomms13317 CrossRef Google Scholar Pub Med -->
[133] Montes-Usategui M, Pleguezuelos E, Andilla J, Martín-Badosa E. Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Opt Express 14, 2101–2107 (2006). doi: 10.1364/OE.14.002101 CrossRef Google Scholar Pub Med -->
[134] Lizana A, Zhang HL, Turpin A, Van Eeckhout A, Torres-Ruiz FA et al. Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures. Sci Rep 8, 11263 (2018). doi: 10.1038/s41598-018-29540-1 CrossRef Google Scholar Pub Med -->
[135] Schonbrun E, Piestun R, Jordan P, Cooper J, Wulff KD et al. 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13, 3777–3786 (2005). doi: 10.1364/OPEX.13.003777 CrossRef Google Scholar Pub Med -->
[136] Köhler J, Ruschke J, Ferenz KB, Esen C, Kirsch M et al. Investigation of albumin-derived perfluorocarbon-based capsules by holographic optical trapping. Biomed Opt Express 9, 743–754 (2018). doi: 10.1364/BOE.9.000743 CrossRef Google Scholar Pub Med -->
[137] Suarez RAB, Ambrosio LA, Neves AAR, Zamboni-Rached M, Gesualdi MRR. Experimental optical trapping with frozen waves. Opt Lett 45, 2514–2517 (2020). doi: 10.1364/OL.390909 CrossRef Google Scholar Pub Med -->
[138] Lamperska W, Drobczyński S, Nawrot M, Wasylczyk P, Masajada J. Micro-dumbbells—A versatile tool for optical tweezers. Micromachines 9, 277 (2018). doi: 10.3390/mi9060277 CrossRef Google Scholar Pub Med -->
[139] Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986). doi: 10.1364/OL.11.000288 CrossRef Google Scholar Pub Med -->
[140] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Diffractive optical tweezers in the Fresnel regime. Opt Express 12, 2243–2250 (2004). doi: 10.1364/OPEX.12.002243 CrossRef Google Scholar Pub Med -->
[141] López-Quesada C, Andilla J, Martín-Badosa E. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor. Appl Opt 48, 1084–1090 (2009). doi: 10.1364/AO.48.001084 CrossRef Google Scholar Pub Med -->
[142] Farré A, Shayegan M, López-Quesada C, Blab GA, Montes-Usategui M et al. Positional stability of holographic optical traps. Opt Express 19, 21370–21384 (2011). doi: 10.1364/OE.19.021370 CrossRef Google Scholar Pub Med -->
[143] Martinez JL, Fernandez EJ, Prieto PM, Artal P. Chromatic aberration control with liquid crystal spatial phase modulators. Opt Express 25, 9793–9801 (2017). doi: 10.1364/OE.25.009793 CrossRef Google Scholar Pub Med -->
[144] Chen J, Kong LJ, Zhan QW. Demonstration of a vectorial optical field generator with adaptive close loop control. Rev Sci Instrum 88, 125111 (2017). doi: 10.1063/1.4999656 CrossRef Google Scholar Pub Med -->
[145] Wang LW, Yan W, Li RZ, Weng XY, Zhang J et al. Aberration correction for improving the image quality in STED microscopy using the genetic algorithm. Nanophotonics 7, 1971–1980 (2018). doi: 10.1515/nanoph-2018-0133 CrossRef Google Scholar Pub Med -->
[146] Chandra AD, Banerjee A. Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm. J Mod Opt 67, 628–637 (2020). doi: 10.1080/09500340.2020.1760954 CrossRef Google Scholar Pub Med -->
[147] Khorin PA, Porfirev AP, Khonina SN. Adaptive detection of wave aberrations based on the multichannel filter. Photonics 9, 204 (2022). doi: 10.3390/photonics9030204 CrossRef Google Scholar Pub Med -->
[148] Zeylikovich I, Sztul HI, Kartazaev V, Le T, Alfano RR. Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation. Opt Letters 32, 2025–2027 (2007). doi: 10.1364/OL.32.002025 CrossRef Google Scholar Pub Med -->
[149] Hahn J, Kim H, Choi K, Lee B. Real-time digital holographic beam-shaping system with a genetic feedback tuning loop. Appl Opt 45, 915–924 (2006). doi: 10.1364/AO.45.000915 CrossRef Google Scholar Pub Med -->
[150] Frumker E, Silberberg Y. Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator. Opt Lett 32, 1384–1386 (2007). doi: 10.1364/OL.32.001384 CrossRef Google Scholar Pub Med -->
[151] Li RJ, Gao YH, Cao LC. In situ calibration for a phase-only spatial light modulator based on digital holography. Opt Eng 59, 053101 (2020). Google Scholar Pub Med -->
[152] Jesacher A, Schwaighofer A, Fürhapter S, Maurer C, Bernet S et al. Wavefront correction of spatial light modulators using an optical vortex image. Opt Express 15, 5801–5808 (2007). doi: 10.1364/OE.15.005801 CrossRef Google Scholar Pub Med -->
[153] Jiang Wenhan. Overview of adaptive optics development. Opto-Electronic Eng 45, 170489 (2018). doi: 10.12086/oee.2018.170489 CrossRef Google Scholar Pub Med -->
[154] Mu QQ, Cao ZL, Hu LF, Li DY, Xuan L. Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Opt Express 14, 8013–8018 (2006). doi: 10.1364/OE.14.008013 CrossRef Google Scholar Pub Med -->
[155] Mu QQ, Cao ZL, Li DY, Hu LF, Xuan L. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye. Opt Express 15, 1946–1953 (2007). doi: 10.1364/OE.15.001946 CrossRef Google Scholar Pub Med -->
[156] Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018). doi: 10.1126/science.aaq1392 CrossRef Google Scholar Pub Med -->
[157] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7, 141–147 (2010). doi: 10.1038/nmeth.1411 CrossRef Google Scholar Pub Med -->
[158] Xavier J, Dasgupta R, Ahlawat S, Joseph J, Gupta PK. Three dimensional optical twisters-driven helically stacked multi-layered microrotors. Appl Phys Lett 100, 121101 (2012). doi: 10.1063/1.3693413 CrossRef Google Scholar Pub Med -->
[159] Yan W, Yang YL, Tan Y, Chen X, Li Y et al. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Res 5, 176–181 (2017). doi: 10.1364/PRJ.5.000176 CrossRef Google Scholar Pub Med -->
[160] Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. Spiral interferometry. Opt Lett 30, 1953–1955 (2005). doi: 10.1364/OL.30.001953 CrossRef Google Scholar Pub Med -->
[161] Zhao SA, Chung PS. Digital speckle shearing interferometer using a liquid-crystal spatial light modulator. Opt Eng 45, 105606 (2006). doi: 10.1117/1.2360940 CrossRef Google Scholar Pub Med -->
[162] Maurer C, Bernet S, Ritsch-Marte M. Refining common path interferometry with a spiral phase Fourier filter. J Opt A Pure Appl Opt 11, 094023 (2009). doi: 10.1088/1464-4258/11/9/094023 CrossRef Google Scholar Pub Med -->
[163] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Spiral interferogram analysis. J Opt Soc Am A 23, 1400–1409 (2006). doi: 10.1364/JOSAA.23.001400 CrossRef Google Scholar Pub Med -->
[164] Hai N, Rosen J. Single-plane and multiplane quantitative phase imaging by self-reference on-axis holography with a phase-shifting method. Opt Express 29, 24210–24225 (2021). doi: 10.1364/OE.431529 CrossRef Google Scholar Pub Med -->
[165] Leach J, Keen S, Padgett MJ, Saunter C, Love GD. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Opt Express 14, 11919–11924 (2006). doi: 10.1364/OE.14.011919 CrossRef Google Scholar Pub Med -->
[166] Mateo MP, Garcia CC, Hergenröder R. Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79, 4908–4914 (2007). doi: 10.1021/ac070241q CrossRef Google Scholar Pub Med -->
[167] Xue S, Chen SY, Fan ZB, Zhai DD. Adaptive wavefront interferometry for unknown free-form surfaces. Opt Express 26, 21910–21928 (2018). doi: 10.1364/OE.26.021910 CrossRef Google Scholar Pub Med -->
[168] van Putten EG, Lagendijk A, Mosk AP. Nonimaging speckle interferometry for high-speed nanometer-scale position detection. Opt Letters 37, 1070–1072 (2012). doi: 10.1364/OL.37.001070 CrossRef Google Scholar Pub Med -->
[169] Dorrah AH, Zamboni-Rached M, Mojahedi M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci Appl 7, 40 (2018). doi: 10.1038/s41377-018-0034-9 CrossRef Google Scholar Pub Med -->
[170] Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation. Opt Express 28, 8064–8075 (2020). doi: 10.1364/OE.386047 CrossRef Google Scholar Pub Med -->
[171] Huang GQ, Wu DX, Luo JW, Huang Y, Shen YC. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt Express 28, 9487–9500 (2020). doi: 10.1364/OE.389133 CrossRef Google Scholar Pub Med -->
[172] Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt Express 25, 13883–13896 (2017). doi: 10.1364/OE.25.013883 CrossRef Google Scholar Pub Med -->
[173] Vijayakumar A, Rosen J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt Lett 42, 947–950 (2017). doi: 10.1364/OL.42.000947 CrossRef Google Scholar Pub Med -->
[174] Dubey N, Rosen J, Gannot I. High-resolution imaging system with an annular aperture of coded phase masks for endoscopic applications. Opt Express 28, 15122–15137 (2020). doi: 10.1364/OE.391713 CrossRef Google Scholar Pub Med -->
[175] Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt Lett 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309 CrossRef Google Scholar Pub Med -->
[176] Van Beijnum F, Van Putten EG, Lagendijk A, Mosk AP. Frequency bandwidth of light focused through turbid media. Opt Lett 36, 373–375 (2011). doi: 10.1364/OL.36.000373 CrossRef Google Scholar Pub Med -->
[177] Kashter Y, Vijayakumar A, Rosen J. Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder. Optica 4, 932–939 (2017). doi: 10.1364/OPTICA.4.000932 CrossRef Google Scholar Pub Med -->
[178] Chen L, Chen ZY, Singh RK, Pu JX. Imaging of polarimetric-phase object through scattering medium by phase shifting. Opt Express 28, 8145–8155 (2020). doi: 10.1364/OE.382551 CrossRef Google Scholar Pub Med -->
[179] Singh D, Singh RK. Lensless Stokes holography with the Hanbury Brown-Twiss approach. Opt Express 26, 10801–10812 (2018). doi: 10.1364/OE.26.010801 CrossRef Google Scholar Pub Med -->
[180] Funamizu H, Uozumi J. Generation of fractal speckles by means of a spatial light modulator. Opt Express 15, 7415–7422 (2007). doi: 10.1364/OE.15.007415 CrossRef Google Scholar Pub Med -->
[181] Carbonell-Leal M, Mínguez-Vega G, Lancis J, Mendoza-Yero M. Encoding of arbitrary micrometric complex illumination patterns with reduced speckle. Opt Express 27, 19788–19801 (2019). doi: 10.1364/OE.27.019788 CrossRef Google Scholar Pub Med -->
[182] Cui M, Yang CH. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt Express 18, 3444–3455 (2010). doi: 10.1364/OE.18.003444 CrossRef Google Scholar Pub Med -->
[183] Fan WR, Hu XS, Zhaxi BM, Chen ZY, Pu JX. Generation of focal pattern with controllable polarization and intensity for laser beam passing through a multi-mode fiber. Opt Express 26, 7693–7700 (2018). doi: 10.1364/OE.26.007693 CrossRef Google Scholar Pub Med -->
[184] Li DY, Sahoo SK, Lam HQ, Wang D, Dang C. Non-invasive optical focusing inside strongly scattering media with linear fluorescence. Appl Phys Lett 116, 241104 (2020). doi: 10.1063/5.0004071 CrossRef Google Scholar Pub Med -->
[185] Zhang K, Wang ZY, Zhao HH, Liu C, Zhang HY et al. Implementation of an off-axis digital optical phase conjugation system for turbidity suppression on scattering medium. Appl Sci 10, 875 (2020). doi: 10.3390/app10030875 CrossRef Google Scholar Pub Med -->
[186] Cheng ZT, Wang LV. Focusing light into scattering media with ultrasound-induced field perturbation. Light Sci Appl 10, 159 (2021). doi: 10.1038/s41377-021-00605-7 CrossRef Google Scholar Pub Med -->
[187] Wu P, Zhang DJ, Yuan J, Zeng SQ, Gong H et al. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography. Opt Express 30, 5177–5191 (2022). doi: 10.1364/OE.451409 CrossRef Google Scholar Pub Med -->
[188] Chen HK, Wu XJ, Zhang YQ, Yang Y, Min CJ et al. Wide-field in situ multiplexed Raman imaging with superresolution. Photonics Res 6, 530–534 (2018). doi: 10.1364/PRJ.6.000530 CrossRef Google Scholar Pub Med -->
[189] Paterson L, Agate B, Comrie M, Ferguson R, Lake TK et al. Photoporation and cell transfection using a violet diode laser. Opt Express 13, 595–600 (2005). doi: 10.1364/OPEX.13.000595 CrossRef Google Scholar Pub Med -->
[190] Ng JW, Chatenay D, Robert J, Poirier MG. Plasmid copy number noise in monoclonal populations of bacteria. Phys Rev E 81, 011909 (2010). doi: 10.1103/PhysRevE.81.011909 CrossRef Google Scholar Pub Med -->
[191] Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat Photonics 7, 449–453 (2013). doi: 10.1038/nphoton.2013.97 CrossRef Google Scholar Pub Med -->
[192] Reda F, Salvatore M, Borbone F, Maddalena P, Ambrosio A et al. Varifocal diffractive lenses for multi-depth microscope imaging. Opt Express 30, 12695–12711 (2022). doi: 10.1364/OE.455520 CrossRef Google Scholar Pub Med -->
[193] Buckley C, Carvalho MT, Young LK, Rider SA, McFadden C et al. Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish. Sci Rep 7, 5096 (2017). doi: 10.1038/s41598-017-05028-2 CrossRef Google Scholar Pub Med -->
[194] Rodrigo JA, Soto JM, Alieva T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed Opt Express 8, 5507–5517 (2017). doi: 10.1364/BOE.8.005507 CrossRef Google Scholar Pub Med -->
[195] Wang ZJ, Cai YA, Liang YS, Zhou X, Yan SH et al. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomed Opt Express 8, 5493–5506 (2017). doi: 10.1364/BOE.8.005493 CrossRef Google Scholar Pub Med -->
[196] Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 6, 71 (2004). doi: 10.1088/1367-2630/6/1/071 CrossRef Google Scholar Pub Med -->
[197] Leach J, Dennis MR, Courtial J, Padgett MJ. Knotted threads of darkness. Nature 432, 165 (2004). Google Scholar Pub Med -->
[198] Leach J, Dennis MR, Courtial J, Padgett MJ. Vortex knots in light. New J Phys 7, 55 (2005). doi: 10.1088/1367-2630/7/1/055 CrossRef Google Scholar Pub Med -->
[199] Tao SH, Yuan XC, Lin J, Peng X, Niu HB. Fractional optical vortex beam induced rotation of particles. Opt Express 13, 7726–7731 (2005). doi: 10.1364/OPEX.13.007726 CrossRef Google Scholar Pub Med -->
[200] Hu JT, Tai YP, Zhu LH, Long ZX, Tang MM et al. Optical vortex with multi-fractional orders. Appl Phys Lett 116, 201107 (2020). doi: 10.1063/5.0004692 CrossRef Google Scholar Pub Med -->
[201] Hu XB, Perez-Garcia B, Rodríguez-Fajardo V, Hernandez-Aranda RI, Forbes A et al. Free-space local nonseparability dynamics of vector modes. Photonics Res 9, 439–445 (2021). doi: 10.1364/PRJ.416342 CrossRef Google Scholar Pub Med -->
[202] Shen YJ, Nape I, Yang XL, Fu X, Gong ML et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl 10, 50 (2021). doi: 10.1038/s41377-021-00493-x CrossRef Google Scholar Pub Med -->
[203] Malik M, Mirhosseini M, Lavery MPJ, Leach J, Padgett MJ et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat Commun 5, 3115 (2014). doi: 10.1038/ncomms4115 CrossRef Google Scholar Pub Med -->
[204] Zhang J, Huang SJ, Zhu FQ, Shao W, Chen MS. Dimensional properties of Laguerre–Gaussian vortex beams. Appl Opt 56, 3556–3561 (2017). doi: 10.1364/AO.56.003556 CrossRef Google Scholar Pub Med -->
[205] Shao ZK, Zhu JB, Chen YJ, Zhang YF, Yu SY. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat Commun 9, 926 (2018). doi: 10.1038/s41467-018-03237-5 CrossRef Google Scholar Pub Med -->
[206] Pan SZ, Pei CY, Liu S, Wei J, Wu D et al. Measuring orbital angular momentums of light based on petal interference patterns. OSA Continuum 1, 451–461 (2018). doi: 10.1364/OSAC.1.000451 CrossRef Google Scholar Pub Med -->
[207] Li XZ, Zhang H. Anomalous ring-connected optical vortex array. Opt Express 28, 13775–13785 (2020). doi: 10.1364/OE.390985 CrossRef Google Scholar Pub Med -->
[208] Lu JN, Cao CY, Zhu ZQ, Gu B. Flexible measurement of high-order optical orbital angular momentum with a variable cylindrical lens pair. Appl Phys Lett 116, 201105 (2020). doi: 10.1063/5.0002756 CrossRef Google Scholar Pub Med -->
[209] Klug A, Peters C, Forbes A. Robust structured light in atmospheric turbulence. Adv Photonics 5, 016006–016006 (2023). Google Scholar Pub Med -->
[210] Emile O, Emile J, Brousseau C. Rotational Doppler shift upon reflection from a right angle prism. Appl Phys Lett 116, 221102 (2020). doi: 10.1063/5.0009396 CrossRef Google Scholar Pub Med -->
[211] Li DH, Bongiovanni D, Goutsoulas M, Xia SQ, Zhang Z et al. Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams. OSA Continuum 3, 1525–1535 (2020). doi: 10.1364/OSAC.391878 CrossRef Google Scholar Pub Med -->
[212] Xu YQ, Li X, Zhou L, Zhou YM, Wang F et al. Experimental investigation in Airy transform of Gaussian beams with optical vortex. Results Phys 28, 104588 (2021). doi: 10.1016/j.rinp.2021.104588 CrossRef Google Scholar Pub Med -->
[213] Fu SY, Hai L, Song R, Gao CQ, Zhang XD. Representation of total angular momentum states of beams through a four-parameter notation. New J Phys 23, 083015 (2021). doi: 10.1088/1367-2630/ac1695 CrossRef Google Scholar Pub Med -->
[214] Kesarwani R, Simbulan KB, Huang TD, Chiang YF, Yeh NC et al. Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light. Sci Adv 8, eabm0100 (2022). doi: 10.1126/sciadv.abm0100 CrossRef Google Scholar Pub Med -->
[215] Li XZ, Ma HX, Yin CL, Tang J, Li HH et al. Controllable mode transformation in perfect optical vortices. Opt Express 26, 651–662 (2018). doi: 10.1364/OE.26.000651 CrossRef Google Scholar Pub Med -->
[216] Li L, Chang CL, Yuan XZ, Yuan CJ, Feng ST et al. Generation of optical vortex array along arbitrary curvilinear arrangement. Opt Express 26, 9798–9812 (2018). doi: 10.1364/OE.26.009798 CrossRef Google Scholar Pub Med -->
[217] Szatkowski M, Masajada J, Augustyniak I, Nowacka K. Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing. Opt Commun 463, 125341 (2020). doi: 10.1016/j.optcom.2020.125341 CrossRef Google Scholar Pub Med -->
[218] Kumar P, Pal SK, Nishchal NK, Senthilkumaran P. Non-interferometric technique to realize vector beams embedded with polarization singularities. J Opt Soc Am A 37, 1043–1052 (2020). doi: 10.1364/JOSAA.393027 CrossRef Google Scholar Pub Med -->
[219] Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004 CrossRef Google Scholar Pub Med -->
[220] Lochab P, Senthilkumaran P, Khare K. Robust laser beam engineering using polarization and angular momentum diversity. Opt Express 25, 17524–17529 (2017). doi: 10.1364/OE.25.017524 CrossRef Google Scholar Pub Med -->
[221] Wu Y, Ni R, Xu Z, Wu YD, Fang XY et al. Tunable third harmonic generation of vortex beams in an optical superlattice. Opt Express 25, 30820–30826 (2017). doi: 10.1364/OE.25.030820 CrossRef Google Scholar Pub Med -->
[222] Li H, Liu HG, Chen XF. Nonlinear generation of Airy vortex beam. Opt Express 26, 21204–21209 (2018). doi: 10.1364/OE.26.021204 CrossRef Google Scholar Pub Med -->
[223] Otte E, Tekce K, Lamping S, Ravoo BJ, Denz C. Polarization nano-tomography of tightly focused light landscapes by self-assembled monolayers. Nat Commun 10, 4308 (2019). doi: 10.1038/s41467-019-12127-3 CrossRef Google Scholar Pub Med -->
[224] Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express 14, 3792–3805 (2006). doi: 10.1364/OE.14.003792 CrossRef Google Scholar Pub Med -->
[225] Situ GH, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement. J Opt Soc Am A 26, 1788–1797 (2009). doi: 10.1364/JOSAA.26.001788 CrossRef Google Scholar Pub Med -->
[226] Tao SH, Yuan XC, Lin J, Burge RE. Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges. Opt Express 14, 535–541 (2006). doi: 10.1364/OPEX.14.000535 CrossRef Google Scholar Pub Med -->
[227] Forbes A, Ramachandran S, Zhan QW. Photonic angular momentum: progress and perspectives. Nanophotonics 11, 625–631 (2022). doi: 10.1515/nanoph-2022-0035 CrossRef Google Scholar Pub Med -->
[228] Chen J, Chen X, Li T, Zhu SN. On‐chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev 12, 1700331 (2018). doi: 10.1002/lpor.201700331 CrossRef Google Scholar Pub Med -->
[229] Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Appl Phys Lett 90, 261114 (2007). doi: 10.1063/1.2752728 CrossRef Google Scholar Pub Med -->
[230] Zhu FQ, Huang SJ, Shao W, Zhang J, Chen MS et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM). Opt Commun 396, 50–57 (2017). doi: 10.1016/j.optcom.2017.03.023 CrossRef Google Scholar Pub Med -->
[231] Shao W, Huang SJ, Liu XP, Chen MS. Free-space optical communication with perfect optical vortex beams multiplexing. Opt Commun 427, 545–550 (2018). doi: 10.1016/j.optcom.2018.06.079 CrossRef Google Scholar Pub Med -->
[232] Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 20, 13195–13200 (2012). doi: 10.1364/OE.20.013195 CrossRef Google Scholar Pub Med -->
[233] Wang LX, Nejad RM, Corsi A, Lin JC, Messaddeq Y et al. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Opt Express 25, 11736–11749 (2017). doi: 10.1364/OE.25.011736 CrossRef Google Scholar Pub Med -->
[234] Jing GQ, Chen LZ, Wang PP, Xiong WJ, Huang ZB et al. Recognizing fractional orbital angular momentum using feed forward neural network. Results Phys 28, 104619 (2021). doi: 10.1016/j.rinp.2021.104619 CrossRef Google Scholar Pub Med -->
[235] Trichili A, Rosales-Guzmán C, Dudley A, Ndagano B, Ben Salem A et al. Optical communication beyond orbital angular momentum. Sci Rep 6, 27674 (2016). doi: 10.1038/srep27674 CrossRef Google Scholar Pub Med -->
[236] Erhard M, Fickler R, Krenn M, Zeilinger A. Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl 7, 17146 (2018). Google Scholar Pub Med -->
[237] Forbes A, Nape I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci 1, 011701 (2019). doi: 10.1116/1.5112027 CrossRef Google Scholar Pub Med -->
[238] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001). doi: 10.1038/35085529 CrossRef Google Scholar Pub Med -->
[239] Jack B, Leach J, Ritsch H, Barnett M, Padgett MJ et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum. New J Phys 11, 103024 (2009). doi: 10.1088/1367-2630/11/10/103024 CrossRef Google Scholar Pub Med -->
[240] Agnew M, Leach J, McLaren M, Stef Roux F, Boyd RW. Tomography of the quantum state of photons entangled in high dimensions. Phys Rev A 84, 062101 (2011). doi: 10.1103/PhysRevA.84.062101 CrossRef Google Scholar Pub Med -->
[241] Dada AC, Leach J, Buller GS, Padgett MJ, Andersson E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys 7, 677–680 (2011). doi: 10.1038/nphys1996 CrossRef Google Scholar Pub Med -->
[242] Leach J, Jack B, Romero J, jha AK, Yao AM et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329, 662–665 (2010). doi: 10.1126/science.1190523 CrossRef Google Scholar Pub Med -->
[243] Nape I, Rodríguez-Fajardo V, Zhu F, Huang HC, Leach J et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat Commun 12, 5159 (2021). doi: 10.1038/s41467-021-25447-0 CrossRef Google Scholar Pub Med -->
[244] Bavaresco J, Herrera Valencia N, Klöckl C, Pivoluska M, Erker P et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat Phys 14, 1032–1037 (2018). doi: 10.1038/s41567-018-0203-z CrossRef Google Scholar Pub Med -->
[245] Kovlakov EV, Straupe SS, Kulik SP. Quantum state engineering with twisted photons via adaptive shaping of the pump beam. Phys Rev A 98, 060301(R) (2018). Google Scholar Pub Med -->
[246] Walborn SP, de Oliveira AN, Pádua S, Monken CH. Multimode hong-ou-mandel interference. Phys Rev Lett 90, 143601 (2003). doi: 10.1103/PhysRevLett.90.143601 CrossRef Google Scholar Pub Med -->
[247] Bornman N, Tavares Buono W, Lovemore M, Forbes A. Optimal pump shaping for entanglement control in any countable basis. Adv Quantum Technol 4, 2100066 (2021). doi: 10.1002/qute.202100066 CrossRef Google Scholar Pub Med -->
[248] McLaren M, Mhlanga T, Padgett MJ, Roux FS, Forbes A. Self-healing of quantum entanglement after an obstruction. Nat Commun 5, 3248 (2014). doi: 10.1038/ncomms4248 CrossRef Google Scholar Pub Med -->
[249] Zhang YW, Roux FS, Konrad T, Agnew M, Leach J et al. Engineering two-photon high-dimensional states through quantum interference. Sci Adv 2, e1501165 (2016). doi: 10.1126/sciadv.1501165 CrossRef Google Scholar Pub Med -->
[250] De Oliveira M, Bornman N, Forbes A. Holographically controlled random numbers from entangled twisted photons. Phys Rev A 102, 032620 (2020). doi: 10.1103/PhysRevA.102.032620 CrossRef Google Scholar Pub Med -->
[251] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 88, 032305 (2013). doi: 10.1103/PhysRevA.88.032305 CrossRef Google Scholar Pub Med -->
[252] Mirhosseini M, Magaña-Loaiza OS, O’Sullivan MN, Rodenburg B, Malik M et al. High-dimensional quantum cryptography with twisted light. New J Phys 17, 033033 (2015). doi: 10.1088/1367-2630/17/3/033033 CrossRef Google Scholar Pub Med -->
[253] Sit A, Bouchard F, Fickler R, Gagnon-Bischoff J, Larocque H et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017). doi: 10.1364/OPTICA.4.001006 CrossRef Google Scholar Pub Med -->
[254] Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding YH et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys Rev Appl 11, 064058 (2019). doi: 10.1103/PhysRevApplied.11.064058 CrossRef Google Scholar Pub Med -->
[255] Pinnell J, Nape I, de Oliveira M, TabeBordbar N, Forbes A. Experimental demonstration of 11-dimensional 10-party quantum secret sharing. Laser Photonics Rev 14, 2000012 (2020). doi: 10.1002/lpor.202000012 CrossRef Google Scholar Pub Med -->
[256] Zhang YW, Agnew M, Roger T, Roux FS, Konrad T et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun 8, 632 (2017). doi: 10.1038/s41467-017-00706-1 CrossRef Google Scholar Pub Med -->
[257] Sephton B, Vallés A, Nape I, Cox MA, Steinlechner F et al. Stimulated teleportation of high-dimensional information with a nonlinear spatial mode detector. arXiv: 2111.13624 (2021). Google Scholar Pub Med -->
[258] Krenn M, Huber M, Fickler R, Lapkiewicz R, Ramelow S et al. Generation and confirmation of a (100× 100)-dimensional entangled quantum system. Proc Natl Acad Sci USA 111, 6243–6247 (2014). doi: 10.1073/pnas.1402365111 CrossRef Google Scholar Pub Med -->
[259] Shapiro JH, Boyd RW. The physics of ghost imaging. Quantum Inf Process 11, 949–993 (2012). doi: 10.1007/s11128-011-0356-5 CrossRef Google Scholar Pub Med -->
[260] Padgett MJ, Boyd RW. An introduction to ghost imaging: quantum and classical. Philos Trans Roy Soc A Math Phys Eng Sci 375, 20160233 (2017). Google Scholar Pub Med -->
[261] Gatti A, Brambilla E, Lugiato L. Quantum imaging. Prog Opt 51, 251–348 (2008). Google Scholar Pub Med -->
[262] Edgar MP, Gibson GM, Padgett MJ. Principles and prospects for single-pixel imaging. Nat Photonics 13, 13–20 (2019). doi: 10.1038/s41566-018-0300-7 CrossRef Google Scholar Pub Med -->
[263] Mansha S, Moitra P, Xu XW, Mass TWW, Veetil RM et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl 11, 141 (2022). doi: 10.1038/s41377-022-00832-6 CrossRef Google Scholar Pub Med -->